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1. WHY CONSIDER HIDDEN VARIABLES.
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Operations versus Explanations
Orthodox Quantum Theory (OQT) is an Operational Theory. That
IS, for the following temporally-ordered macroscropic events:
e Preparation procedure c
e Measurement procedure a (that can be freely chosen by Alice)
e Measurement outcome A

the theory gives you P(A|a, c). It offers no explanation or interpretation.

Any additional variables A are operationally superfluous and so can
be defined to be Hidden Variables.

Any model or mechanism which offers some extra explanation
using HVs is a HV interpretation.
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Hidden Variables Interpretations

A HV interpretation (HVI) consists of

1. The set A of values of A.
2. A mapping from c to a probability meausure dg(A) on A.
3. A probability distribution P(Aja, c,A) satisfying

/duC P(Ala,c,A) = P(Ala,c).

In (non-trivial) HVIs, P(Aja,c,A\) # P(Ala,c).
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Why consider Hidden Variables?

1. To explain the probabilities that appear in the operational theory.

2. To explain the existence of people who perform preparations,
choose measurements, and observe results. That is, to explain the
things that are assumed in the operational theory.

3. Perhaps to suggest research towards a theory that might supersede
guantum theory.
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2. THE PROBLEM WITH HIDDEN VARIABLES.
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Violation of Locality

Now consider two distant parties, with space-like separated
measurements and results.

Bell (1964) showed that Quantum Phenomena violate local
causality. That is, there does not exist any explanation [A, d(A),
P(A Bla,b,c,A)] of OQT:

P(A,Bla,b,c) = / di(A)P(A, Bla, b, c,\)
N\

such that
P(Ala,B,b,c,A) =P(Ala,c,A).

That iIs, there are some Quantum Phenomena that cannot result
from local causes. The trivial case A = p. IS no exception.
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Fx % Locality

(apologies to Lucien)

The only way to avoid the violation of local causality is to be strictly
operational.t

However this does not mean that OQT respects local causality.

Rather, being a strict operationalist means refusing to consider
explanations, and so refusing to admit the concept of local causality.

So one could argue (Bell certainly did) that nonlocality is not a
problem of HV models, but rather a feature of OQT revealed by
considering HV models.

1Or to deny the reality of the experience of distant observers, or to deny free will, or perhaps to
allow retrocausation.
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Nonuniqueness Is a real problem

There are Infinitely many nonlocal HVIs compatible with
experience. See Bacciagaluppi and Dickson, Found. Phys. (1999)
and Gambetta and Wiseman, Found. Phys. (2004) for an even more
general formulation.

We could just accept this and say no more. However, if we identify
a unique HVI preferred on physical grounds, then

1. This would aid pedagogy.
2. This could aid intuition into Quantum Phenomena.

3. This might point towards a theory beyond QT.
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3. BOHMIAN MECHANICS.

lde Broglie (1926); Bohm (1953) and many others since.
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Single-particle Bohmian mechanics

Consider scalar particles for simplicity, and for the moment just a
single particle with state |{). Then the Bohmian HV is the particle’s
position X, and

X = v(Xt) = j(xt)/P(x;t),

POGT) = (W)X {X]W(L)),
106t = (h/m)Im (W(t) )T X[W(t)).

This j(x;t) is the standard probability current (flux), which satsifies

%P(x;t) +0-j(x;t) =0.

This guarantees that if the probability distribution for x at time tg Is
P(X;to) then at time t it will be P(x;t).
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An example of Bohmian trjaectories
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General Bohmian Mechanics

In general Bohmian mechanics, X is an oo-vector including the 3-
positions of all the particles and also the values of all the quantized
gauge fields at every point in space. It obeys

_ R PO X

H,%:]|¥(t))
h{¥(t)]x){x] |

|
(1)

. Xn
Xn = Vn(X;1) T

Here |W) is a universal wavefunction or guiding function, not the
state of some subsystem (as in OQT).

BM is nonlocal because x, depends on all the co-ordinates in X.

Bell (1980): “It is a merit of the de Broglie-Bohm version to bring
this [nonlocality] out so explicitly that it cannot be ignored.”
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OQT emerges from Bohmian Mechanics

Quantum states for subsystems (as in OQT) emerge from BM. Say
the universe comprised only an observer o and a system s, and o
could assign a pure state to s, then that state would be

W) O (Xo|W).

Unlike OQT, BM defines the observer unambiguously, being made of
particles and fields with a definite configuration x,, which is known (to
some approximation) to the observer by introspection.

In addition to the operational state |Ys) (Hardy, 2004), the system
IS also characterized by an (unknown) xs, guided by |ys), to which the
observer will assign the distribution

(Ws|Xs) (Xs|Ws) -
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Aside: Epistemic States Versus Operational States,
and Excess Baggage

Note that |)s) is not an epistemic state for x5 (unlike the case in
Rob’s toy theory, where the epistemic states and operational states
are identical, both distinct from ontic states.)

Hardy (2004) has proven an ontological excess baggage theorem
for QM: the number of distinct epistemic states (which must be at
least as large as the number of distinct operational states) is infinitely
greater than the dimensionality of the space of operational states.

In the context of BM it can perhaps be argued that this is related to
nonlocality: the operational states are determined by the ontic states
of the rest of the universe, which is much bigger than the system.
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4. WEAK VALUES AND BOHMIAN DYNAMICS
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The problem with |
There are infinitely many expressions for | that obey
%P(x;t) +0-j(x;t) =0,

while still satisfying “all possible physically meaningful requirements
one can put forward for them” (Deotto and Ghirardi, 1998).

Since the “standard” j(x) has been around since 1926 one might
think it would have an operational definition, but it seems not.

The problem is it relates to the velocity of the particle at a particular
position X — quantities that cannot be simultaneously measured.

To solve the problem, turn to Weak Values (Aharanov, Albert &
Vaidman, 1988) which have a proud history of providing the best
operational definition of concepts that orthodox QM cannot define.
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Weak Measurements and Weak Values

A precise (or strong) measurement of some observable 4in general
greatly disturbs the quantum state, projecting it into |A).

But if the measurement is imprecise, the disturbance can be small.

A weak measurement of a is one which is arbitrarily imprecise, and
the disturbance arbitrarily small, such as defined by the following POM
In the limit 0 > a,,.« — Auin.

Fo(A)dA = (216?) Y2expg—(a— A)?/20%/dA

A weak value is just the mean value of a weak measurement.

Simply considering a prepared state ) gives a boring mean value:

Pal

<aweak>‘q;> — <astrong>’q)> — <L|J’a|LIJ>
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Interesting Weak Values

To be Interesting requires post-selection [AAV (1988)]. That Is,
the average of the weak measurement results A is calculated from
the sub-ensemble where a later strong measurement yields the result
corresponding to the state |@).

The post-selected weak value can be shown to be given by the
simple formula

(plaly)
(Qlg)

The weak value can lie outside the range of eigenvalues of a [AAV
(1988)], as first verified experimentally [Ritchie, Story & Hulet (1991)].

(g (&) |y) = Re

(This of course cannot happen for a strong measurement of a.)
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Weak-valued v(x)

For a classical ensemble of particles, the (drift) velocity at a position
X could be measured by the measuring the velocity, and post-selecting
on measuring the position to be x.

In the quantum case, a strong measurement of the velocity operator
= i[H,X] would greatly disturb the particle’s position.

Thus | propose the most natural operational definition of v(x) is:
VOGE) = (x| (Vw) jui)-
This can be shown to be equivalent to:

V(X;t) = lim T E[Xstrong (t 4+ T) — Xyweak (1) [Xstrong (t +T) = X].

—0
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Evaluating the “Naively Observable” v(x)

This evaluates to exactly the standard Bohmian expression:

(6)13) (x[i[H, K W(1)) |
h{POX)XWH)

V(X;t) = Re<LIJ

Note that this “works” as a velocity field only because H is at most
guadratic in the variables conjugate to the HV (that is p).

Thus, a naive experimentalist, knowing only that it is necessary to
use imprecise measurements in order to avoid altering the system,
would, with a large enough ensemble, reconstruct the possible paths
of Bohmian particles directly from experimental data.

Note that it is not possible to follow a single particle along its
trajectory, only to determine the possible trajectories the particles may
follow from an identically prepared source.
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Determinism: a necessary assumption

Strictly, a naive experimentalist would recognize v(x;t) only as
the mean velocity in configuration space — the noise in the weak
measurement could be masking variations in the velocity between
Individual systems that have the same Bohmian position x at time t.

There are in fact other interpretations (e.g. Nelson, 1966) in which
X is the HV, but in which the motion of x is stochastic, and v(x;t) is
only the mean velocity.

Thus to derive BM from the measured v(x;t) it is necessary to make
the assumption of determinism.
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5. WEAK VALUES AND BOHMIAN KINEMATICS

1Since HV dynamics are first-order in time, the kinematics is the HV itself, i.e. x in BM.
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Configuration as the HV: an unnecessary assumption

It would seem necessary to assume that the HV is the configuration
X, as any set of commuting operators can give an HV theory.

For determinism, we need a continuous spectrum (Bub, 1997). But
this still allows for momentum, for example (Brown and Hiley, 2001).

However, If we assume the weak-valued velocity, then we can rule
out replacing X by p. This is because H is not at most quadratic in the
variables conjugate to the p (that is, X). For example: the Coulomb
potential O [x; — x| ~*; the cubic Hamiltonian of the gluon field.

That Is, a naive experimentalist could determine that p as the HV
has a P(p;t) which is not compatible with the naively determined
v(p;t). In general, the kinematics x is singled out by the dynamics.
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6. PROBABILITY AND BOHMIAN MECHANICS
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The probability problem in Bohmian Mechanics

Bohmian mechanics reproduces all of OQT given the kinematics X,
the dyanamics

(WO i

. — I:Ij
VXit) = Re—2r4 %) (x|

%ol W (1))
W)

and the probability assignment

P(X;tg) = (W(to)|x) (X|W(to)).

But why should |W) play this dual role?
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A deeper question: What is probability?

The radical Bayesian (de Finetti) answer: Probability is not real.

P(X;tp) is only an expression of one observer’s beliefs about x. It is
known as the prior probability distribution, or prior.

How do the objective probabillities of OQT arise?
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(Jaynes’) Principle of Indifference

“If the statement of a statistical problem is invariant under some
transformation, then choose a prior that respects this indifference.”

Recall that the problem is specified by the (unkown) x(tp) and the
(known) |W(tg)). But there is no particular significance to the time to.
Therefore the prior should be covariant with respect to translation Iin
time. That Is,

0 0
5t Pprior (%:1) Za s Porior G EXa(G 1)

If we require that P, (X;t) O function of (x|%¥(tp)) and its derivatives,
then (Sheldon Goldstein & Ward Struyve, 2007) the unique solution is

Pprior(X;tO) — <L|J(t0)‘x> <X‘L|J(t0)>-
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Prior and Posterior Distributions

Remember the simple example of a universe comprised only o and
s, with an operational state for the system of |Qs) [ (Xo|W).

Here it is as If the observer knows her own configuration xg. Such
a degree of self-knowledge is neither realistic nor required.

Nevertheless, because the observer is part of the universe in BM,
her knowledge of x is certainly not limited to the prior distribution:

PO1) 7 (W(1)[x) (X[¥(t)),

where x incorporates X,. The right-nand-side is what a totally innocent
observer believes. The left-hand-side is the posterior distribution.
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Epistemology, Ontology, and Nomology

As soon as an innocent observer opens her eyes she collapses
her state of belief about x from P, (X;t) to a much sharper P(x;t),
conditioned on her observing the location of macroscopic objects.

This “collapse” is classical/epistemic/psychological. The configuration
x does not suddenly change, and neither does |W(t))?.

In BM one should not think of |¥(t)) as a quantum state but rather
a guiding function, the essential constituent of the law of motion.

P(x;t) is epistemic. x(t) is ontic. |W(t)) is nomic.

IThis Bayesian updating by an observer in BM is thus similar to the pruning of other branches by
an observer in each branch of Everett’s universal wavefunction. The difference is that in BM there is
a unique real branch singled out by x, and probabilities can be interpreted in the usual way.
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/. SOME REMAINING PROBLEMS / DIRECTIONS
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Relativistic Invariance

Note: As Ward Struyve discussed, we can use Dirac’s original
particle-hole formulation, which is equivalent to standard relativistic
QFT for fermions. Then the fermion positions can be HVs, since

H =3 o, [P, +eAQ)] +mCG, @)

n

IS at most quadratic in p, (in fact, it is at most linear in py).

Nevertheless, BM, like all HVMs, requires a preferred foliation of
space-time, but (of course) it does not allow us to determine what it
IS. This Is unsatisfying.

Perhaps when we have a correct quantum theory of space-time
this will be resolved. That is, perhaps it will be found necessary to
Introduce a preferred foliation.
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The nomic versus the epistemic

If (W) (nomic) and |Ps) O (Xo|¥W) (epistemic) are so different in
nature, how come they are both described by a vector in Hilbert space
which evolves unitarily (for an isolated system)?

Perhaps a TOE will specify a unique |W), and this will allow the law
of motion to be reformulated so as to removes this apparent similarity.

For example, if |¥) is the (assumed unique) solution to H|W) =
Eo|W), then we can re-express the Bohmian law of motion as:

Te[5(8 —x) F183(H — Eo)]

X =Im - -
Tr|d(0 —X) O(H — Eo)]

Or, for example, it might be possible to show that almost every |W)
IS compatible with our experience. [In marked contrast to |{Js)].
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Explorations of Theory Space

If we consider some guiding function f(x) and some law of motion
X =Vv(f(x),0f(x),---), what further restrictions are required to derive
(or rule out)

e A type of locality (~ signal-locality), subsystems, complex
structures.

e Intrinsic Unpredictability: a fundamental distinction between
epistemic and ontic states.

e Well-motivated priors despite intrinsic unpredictability.
e Concept of an operational state (as distinct from epistemic or ontic).
¢ Violation of Local Causality.

e The singling-out of the ‘true’ kinematics and dynamics from
operational considerations (naive experimentalists etc.)
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SUMMARY

1. The probability current in configuration space has a natural
operational definition using weak measurements.

2. This operational definition agrees with the standard expression for
the quantum probability current.

3. Thus the possible trajectories of the hidden variable x In
the Bohmian interpretation can be determined by a naive
experimentalist assuming only that this interpretation is deterministic.
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4. Adopting the naively observable velocity of a hidden variable
In general, the asymmetry between the configuration and the
conjugate momenta in physical Hamiltonians singles out the former.

That is, If the trajectories are to be compatible with the
experimentally observable evolution of the probability distribution,
the HV must be the configuration x as in Bohmian mechanics.

5. Given the Bohmian guidance equation for x, the usual gquantum
distribution for x can be derived Iin the context of Bayesian
probability theory as the unique prior covariant under translation
of the initial time, in accord with Jaynes’ principle of indifference.

6. Many interesting open questions.
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