# Should we think of quantum probabilities as Bayesian probabilities?

#### **Carlton M. Caves**

C. M. Caves, C. A. Fuchs, R. Schack, "Subjective probability and quantum certainty," Studies in History and Philosophy of Modern Physics **38**, 255--274 (2007)...

Department of Physics and Astronomy
University of New Mexico
and
Department of Physics
University of Queensland

caves@info.phys.unm.edu
http://info.phys.unm.edu/~caves

Perimeter Institute-Australia Foundations Workshop Sydney, 2008 February 3

Yes, because facts never determine probabilities or quantum states.

### Subjective Bayesian probabilities

**Category distinction** 

#### **Facts**

Outcomes of *events*Truth values of *propositions* 

**Objective** 

#### **Probabilities**

Agent's degree of belief in outcome of an event or truth of a proposition

**Subjective** 

Facts never imply probabilities.

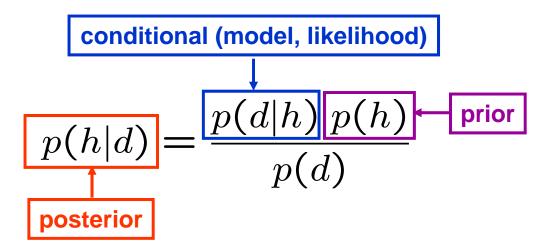
Two agents in possession of the same facts can assign different probabilities.

### Subjective Bayesian probabilities

#### **Probabilities**

Agent's *degree of belief* in outcome of an event or truth of a proposition.

Consequence of ignorance


Agent's betting odds

**Subjective** 

Rules for manipulating probabilities are *objective* consequences of consistent betting behavior (Dutch book).

### Subjective Bayesian probabilities

Facts in the form of observed data *d* are used to update probabilities via Bayes's rule:



The posterior always depends on the prior, except when d logically implies  $h_0$ :

$$\Pr(d|h) = 0 \text{ for } h \neq h_0 \implies \Pr(h_0|d) = 1.$$

The **Fact the cast dottines in a (hombine) avec all dilities at en** 

### Objective probabilities

- Logical probabilities (objective Bayesian): symmetry implies probability
  - Symmetries are applied to judgments, not to facts.
- Probabilities as frequencies: probability as verifiable fact
  - Bigger sample space; exchangeability.
  - Frequencies are facts, not probabilities.

QM: Derivation of quantum probability rule from infinite frequencies?

C. M. Caves, R. Schack, ``Properties of the frequency operator do not imply the quantum probability postulate," Annals of Physics **315**, 123-146 (2005) [Corrigendum: **321**, 504--505 (2006)].

- Objective chance (propensity): probability as specified fact
  - Some probabilities are ignorance probabilities, but others are specified by the facts of a "chance situation."
  - Specification of "chance situation": same, but different.
    objective chance

QM: Probabilities from physical law. Salvation of objective chance?

|             | Classical (realistic, deterministic) world |          | Quantui                               | m world                               |
|-------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|
| State space | Simplex of probabilities for microstates   |          | Convex set of de                      | ensity operators                      |
| State       | Extreme point Microstate                   | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |

$$x_j$$
  $p(x_j)$   $|\psi\rangle$   $\rho = \sum_i p_j |\psi_j\rangle\langle\psi_j|$ 

#### Scorecard:

- 1. Predictions for fine-grained measurements
- 2. Verification (state determination)
- 3. State change on measurement
- 4. Uniqueness of ensembles
- 5. Nonlocal state change (steering)
- 6. Specification (state preparation)

| Objective | Subjective | Objective | Subjective |
|-----------|------------|-----------|------------|
|-----------|------------|-----------|------------|

|                          | Classical (realistic, deterministic) world |               | Quantui                               | m world                               |
|--------------------------|--------------------------------------------|---------------|---------------------------------------|---------------------------------------|
| State space              | Simplex of probabilities for microstates   |               | Convex set of de                      | ensity operators                      |
| State                    | Extreme point Microstate                   | Ensemble      | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Fine-grained measurement | Certainty                                  | Probabilities | Certainty or<br>Probabilities         | Probabilities                         |

$$x_j$$
  $p(x_j)$   $|\psi\rangle$   $\rho = \sum_j p_j |\psi_j\rangle\langle\psi_j|$ 

Certainty:
Orthonormal

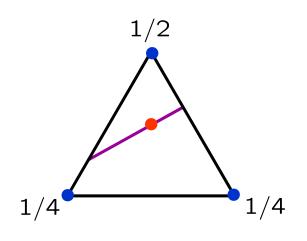
Orthonormal measurement basis that contains  $|\psi\rangle$ .

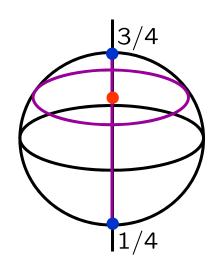
|  | Objective | Subjective | Objective | Subjective |
|--|-----------|------------|-----------|------------|
|--|-----------|------------|-----------|------------|

|                                   | Classical (realistic, deterministic) world |          | Quantu                                | m world                               |
|-----------------------------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|
| State space                       | Simplex of probabilities for microstates   |          | Convex set of density operat          |                                       |
| State                             | Extreme point Microstate                   | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Verification: state determination | Yes                                        | No       | No                                    | No                                    |

Whom do you ask for the system state? The system or an agent?

| Objective | Subjective | Ubjective | Subjective |
|-----------|------------|-----------|------------|
|-----------|------------|-----------|------------|


|                             | Classical (realistic, deterministic) world |          | Quantu                                | m world                               |
|-----------------------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|
| State space                 | Simplex of probabilities for microstates   |          | Convex set of density operator        |                                       |
| State                       | Extreme point Microstate                   | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| State change on measurement | No                                         | Yes      | Yes                                   | Yes                                   |


State-vector reduction or wave-function collapse

Real physical disturbance?

| Objective | Subjective | Ubjective | Subjective |
|-----------|------------|-----------|------------|
|-----------|------------|-----------|------------|

|                         | Classical (realistic, deterministic) world |          | Quantu                                | m world                               |                  |                  |
|-------------------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|------------------|------------------|
| State space             | Simplex of probabilities for microstates   |          | ate chare                             |                                       | Convex set of de | ensity operators |
| State                   | Extreme point Microstate                   | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |                  |                  |
| Uniqueness of ensembles | Yes                                        | No       | No                                    | No                                    |                  |                  |





| Objective Subjective | Ubjective | Subjective |
|----------------------|-----------|------------|
|----------------------|-----------|------------|

|                                  | Classical (realistic, deterministic) world |          | Quantum world                         |                                       |                  |
|----------------------------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|------------------|
| State space                      | Simplex of probabilities for microstates   |          |                                       |                                       | ensity operators |
| State                            | Extreme point<br>Microstate                | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |                  |
| Nonlocal state change (steering) | No                                         | Yes      | Yes                                   | Yes                                   |                  |

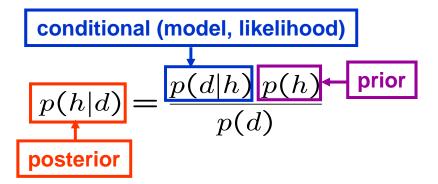
$$p_{0} = 1/2$$
  $p_{1} = 1/2$   $|\Psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$   $p_{0|0} = 3/4$   $p_{0|1} = 1/4$   $p_{1|0} = 1/4$   $p_{1|1} = 3/4$   $p_{1|1} = 3/4$   $p_{1|1} = 3/4$ 

## Real nonlocal physical disturbance?

| Objective | Subjective | Subjective | Subjective |
|-----------|------------|------------|------------|

|                                  | Classical (realistic, deterministic) world |          | Quantum world                         |                                       |
|----------------------------------|--------------------------------------------|----------|---------------------------------------|---------------------------------------|
| State space                      | Simplex of probabilities for microstates   |          | Convex set of density operators       |                                       |
| State                            | Extreme point Microstate                   | Ensemble | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Specification: state preparation | Yes                                        | No       | Copenhagen: Yes                       | Copenhagen: Yes                       |

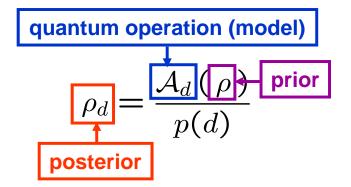
Copenhagen interpretation: Classical facts specifying the properties of the preparation device determine a pure state.


Copenhagen (objective preparations view) becomes the home of objective chance, with nonlocal physical disturbances

| Objective | Subjective | Objective | Objective |
|-----------|------------|-----------|-----------|
|-----------|------------|-----------|-----------|

| Copenhagen                        | Classical (realistic, deterministic) world |               | Quantum world                         |                                       |
|-----------------------------------|--------------------------------------------|---------------|---------------------------------------|---------------------------------------|
| State space                       | Simplex of probabilities for microstates   |               | Convex set of density operators       |                                       |
| State                             | Extreme point Microstate                   | Ensemble      | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Fine-grained measurement          | Certainty                                  | Probabilities | Certainty or<br>Probabilities         | Probabilities                         |
| Verification: state determination | Yes                                        | No            | No                                    | No                                    |
| State change on measurement       | No                                         | Yes           | Yes                                   | Yes                                   |
| Uniqueness of ensembles           | Yes                                        | No            | No                                    | No                                    |
| Nonlocal state change (steering)  | No                                         | Yes           | Yes                                   | Yes                                   |
| Specification: state preparation  | Yes                                        | No            | Yes                                   | Yes                                   |
|                                   | Objective                                  | Subjective    | Objective                             | Objective                             |

### Classical and quantum updating


Facts in the form of observed data *d* are used to update probabilities via Bayes's rule:



The posterior always depends on the prior, except when d logically implies  $h_0$ :

$$Pr(d|h) = 0 \text{ for } h \neq h_0$$
  
 $\implies Pr(h_0|d) = 1.$ 

Facts in the form of observed data d are used to update quantum states:



**Quantum state preparation:** 

 $\rho_d$  does not depend on  $\rho$ .

The posterior state *always* depends on prior beliefs, *even* for quantum state preparation, because there is a judgment involved in choosing the quantum operation.

Facts never determine probabilities or quantum states.

### Where does Copenhagen go wrong?

The Copenhagen interpretation forgets that the preparation device is quantum mechanical. A detailed description of the operation of a preparation device (provably) involves prior judgments in the form of quantum state assignments.

| Subjective<br>Bayesian            | Classical (realistic, deterministic) world |               | Quantum world                         |                                       |
|-----------------------------------|--------------------------------------------|---------------|---------------------------------------|---------------------------------------|
| State space                       | Simplex of probabilities for microstates   |               | Convex set of density operators       |                                       |
| State                             | Extreme point Microstate                   | Ensemble      | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Fine-grained measurement          | Certainty                                  | Probabilities | Certainty or<br>Probabilities         | Probabilities                         |
| Verification: state determination | Yes                                        | No            | No                                    | No                                    |
| State change on measurement       | No                                         | Yes           | Yes                                   | Yes                                   |
| Uniqueness of ensembles           | Yes                                        | No            | No                                    | No                                    |
| Nonlocal state change (steering)  | No                                         | Yes           | Yes                                   | Yes                                   |
| Specification: state preparation  | Yes                                        | No            | No                                    | No                                    |
|                                   | Objective                                  | Subjective    | Subjective                            | Subjective                            |

## Is a quantum coin toss more random than a classical one? Why trust a quantum random generator over a classical one?

$$|\psi\rangle = |\uparrow\rangle = (|\rightarrow\rangle + |\leftarrow\rangle)/\sqrt{2}$$

Measure spin along z axis:

$$p_{\uparrow} = 1$$

$$p_{\perp} = 0$$

Measure spin along *x* axis:

$$p_{\to} = 1/2$$

$$p_{\leftarrow} = 1/2$$

C. M. Caves, R. Schack, "Quantum randomness," in preparation.

quantum coin toss

|                          | Classical (realistic, deterministic) world |               | Quantum world                         |                                       |
|--------------------------|--------------------------------------------|---------------|---------------------------------------|---------------------------------------|
| State space              | Simplex of probabilities for microstates   |               | Convex set of density operators       |                                       |
| State                    | Extreme point Microstate                   | Ensemble      | Extreme point Pure state State vector | Ensemble Mixed state Density operator |
| Fine-grained measurement | Certainty                                  | Probabilities | Certainty or Probabilities            | Probabilities                         |

## Is a quantum coin toss more random than a classical one? Why trust a quantum random generator over a classical one?

$$|\psi\rangle = |\uparrow\rangle = (|\rightarrow\rangle + |\rightarrow\rangle)/\sqrt{2}$$

Measure spin along z axis:

$$p_{\uparrow} = 1$$

$$p_{\downarrow} = 0$$

Measure spin along *x* axis:

$$p_{\to} = 1/2$$

$$p_{\leftarrow} = 1/2$$

quantum coin toss

Standard answer: The quantum coin toss is objective, with probabilities guaranteed by physical law.

Subjective Bayesian answer? No inside information.

### Pure states and inside information

Party *B* has *inside information* about event *E*, relative to party *A*, if *A* is willing to agree to a bet on *E* that *B* believes to be a sure win. *B* has *one-way inside information* if *B* has inside information relative to *A*, but *A* does not have any inside information relative to *A*.

The unique situation in which *no other party can have one-way inside information* relative to a party *Z* is when *Z* assigns a pure state. *Z* is said to have a *maximal belief structure*.

Subjective Bayesian answer
We trust quantum over classical coin tossing because
an insider attack on classical coin tossing can never
be ruled out, whereas the beliefs that lead to a
pure-state assignment are inconsistent with any
other party's being able to launch an insider attack.

### Taking a stab at ontology

CMC only

Quantum systems are defined by attributes, such as position, momentum, angular momentum, and energy or Hamiltonian. These attributes—and thus the numerical particulars of their eigenvalues and eigenfunctions and their inner products—are objective properties of the system.

The value assumed by an attribute is not an objective property, and the quantum state that we use to describe the system is purely subjective.

### Taking a stab at ontology

- 1. The attributes orient and give structure to a system's Hilbert space. Without them we are clueless as to how to manipulate and interact with a system.
- 2. The attributes are unchanging properties of a system, which can be determined from facts. The attributes determine the structure of the world.
- 3. The Hamiltonian orients a system's Hilbert space now with the same space later.
- 4. Convex combinations of Hamiltonian evolutions are essentially unique (up to degeneracies).

Why should you care?

If you do care, how can this be made convincing?

Status of quantum operations?

Effective attributes and effective Hamiltonians? "Effective reality"?