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easy cases
∧ ∨ ~ → ∀ ∃



simple modality



2D modality



the upshot



logical constants



what is a logical constant?



it’s logical



it’s constant



it’s subject matter independent



it’s definable



it plays a structural role in deduction



logical consequence is necessary



there are paradigm cases, 
like ∧, ∨, →, ~, ∀ and ∃ 



what about modality? 



boundary drawing 



valid

invalid



models



proofs



proofs

models



models

Tarski’s models,

Kripke structures

Montague semantics

etc.

Logical constants are
structure invariant



proofs

Natural deduction,
sequent calculus

logical constants have good 
proof-theoretical rules 



proofs

models

soundness     no overlap



proofs

models

completeness    no gap



proofs and models



proofs and models 
can both play a role 

in semantics



proofs are good for accounts 
connected with use… 



Gerhard Gentzen
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defining rules



Arthur Prior



A N A L Y S I S  

THE RUNABOUT INFERENCE-TICKET 

IT is sometimes alleged that there are inferences whose validity arises 
solely from the meanings of certain expressions occurring in them. 

The precise technicalities employed are not important, but let us say 
that such inferences, if any such there be, are analytically valid. 

One sort of inference which is sometimes said to be in this sense 
analytically valid is the passage from a conjunction to either of its con- 
junct~, e.g., the inference ' Grass is green and the sky is blue, therefore 
grass is green '. The validity of this inference is said to arise solely from 
the meaning of the word ' and '. For if we are asked what is the meaning 
of the word ' and ',at least in the purely conjunctive sense (as opposed 
to, e.g., its colloquial use to mean ' and then '), the answer is said to be 
completeEy given by saying that (i) from any pair of statements P and Q 
we can infer the statement formed by joining P to Q by ' and ' (which 
statement we hereafter describe as ' the statement P-and-Q '), that (ii) 
from any conjunctive statement P-and-Q we can infer P, and (iii) from 
P-and-Q we can always infer Q. Anyone who has learnt to perform 
these inferences knows the meaning of ' and ',for there is simply nothing 
more to knowing the meaning of 'and 'than being able to perform these 
inferences. 

A doubt might be raised as to whether it is really the case that, for 
any pair of statements P and Q, there is always a statement R such that 
given P and given Q we can infer R, and given R we can infer P and can 
also infer Q. But on the view we are considering such a doubt is quite 



Inference rules define connectives

A B
[∧I]

A ∧ B

A ∧ B
[∧E1]

A

A ∧ B
[∧E2]

B

That’s all there is to conjunction.

You don’t need to give truth conditions,
satisfaction conditions

or any other sort of ‘semantics.’

These rules tie meaning to use.

Scene Setting 5 of 1



But . . . does it work?

A
[tonkI]

A tonk B

A tonk B
[tonkE]

B

p
[tonkI]

p tonk q
[tonkE]

q

Scene Setting 6 of 1





conjunction has a truth table,
and tonk doesn’t

— J. T. Stevenson



this uses models 



Nuel Belnap



A N A L Y S I S  

TONK, PLONK AND PLINK1 

A N. PRIOR has recently discussed2 the connective tonk, where .tonk is defined by specifying the role it plays in inference. Prior 
characterizes the role of tonk in inference by describing how it behaves 
as conclusion, and as premiss: (1) A I- A-tonk-B, and (2) A-tonk-B t B 
(where we have used the sign ' k ' for deducibility). We are then led by 
the transitivity of deducibility to the validity of A I- B, " which promises 
to banish falscbe Spitzjndigkeit from Logic for ever." 

A possible moral to be drawn is that connectives cannot be defined 
in terms of deducibility at all; that, for instance, it is illegitimate to 
define and as that connective such that (1) A-and-B t A, (2) A-and-B I- B, 
and (3) A, B I- A-and-B. We must first, so the moral goes, have a notion 
of what and means, independently of the role it plays as premiss and as 
conclusion. Truth-tables are one way of specifying this antecedent 
meaning; this seems to be the moral drawn by J. T. Stevenson.3 There 
are good reasons, however, for defending the legitimacy of defining 
connections in terms of the roles they play in deductions. 

It seems plain that throughout the whole texture of philosophy one 
can distinguish two modes of explanation: the analytic mode, which 
tends to explain wholes in terms of parts, and the synthetic mode, which 
explains parts in terms of the wholes or contexts in which they occur.4 
In logic, the analytic mode would be represented by Aristotle, who 
commences with terms as the ultimate atoms, explains propositions or 
judgments by means of these, syllogisms by means of the propositions 
which go to make them up, and finally ends with the notion of a science 
as a tissue of syllogisms. The analytic mode is also represented by the 
contemporary logician who first explains the meaning of complex 
sentences, by means of truth-tables, as a function of their parts, and then 
proceeds to give an account of correct inference in terms of the sentences 
occurring therein. The loczls classicuf of the application of the synthetic 



conjunction is conservative, 
and uniquely defined
and tonk isn’t

— Nuel Belnap



this uses proofs 



but it’s relative to 
your starting point 



            L2L1



Is there an absolute notion?



making it explicit
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X,A,B Y
[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

1

X,A,B Y
[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

1



X,A,B Y
[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

X,A, B Y
========== [∧Df]
X,A ∧ B Y

1



logical notions have definitions 
that make explicit in language 
what is implicit in discourse



easy cases
∧ ∨ ~ → ∀ ∃



X,A,B Y
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1
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1
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========== [ Df]
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X A(n), Y
=========== [ Df]
X xA(x), Y

(where n is free in X, Y)

X,A(n) Y
=========== [ Df]
X, xA(x) Y

(where n is free in X, Y)

1
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a proof from X to A shows us 
why it would be a mistake to 
assert each X and deny A
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Greg Restall∗
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Abstract: I argue for the following four theses. (1) Denial is not to be analysed as the assertion
of a negation. (2) Given the concepts of assertion and denial, we have the resources to analyse
logical consequence as relating arguments with multiple premises and multiple conclusions.
Gentzen’s multiple conclusion calculus can be understood in a straightforward, motivated,
non-question-begging way. (3) If a broadly anti-realist or inferentialist justification of a
logical system works, it works just as well for classical logic as it does for intuitionistic
logic. The special case for an anti-realist justification of intuitionistic logic over and above a
justification of classical logic relies on an unjustified assumption about the shape of proofs.
Finally, (4) this picture of logical consequence provides a relatively neutral shared vocabulary
which can help us understand and adjudicate debates between proponents of classical and
non-classical logics.

* * *

Our topic is the notion of logical consequence: the link between premises and
conclusions, the glue that holds together deductively valid argument. How can
we understand this relation between premises and conclusions? It seems that
any account begs questions. Painting with very broad brushtrokes, we can sketch
the landscape of disagreement like this: “Realists” prefer an analysis of logical
consequence in terms of the preservation of truth [29]. “Anti-realists” take this to be
unhelpful and o:er alternative analyses. Some, like Dummett, look to preservation
of warrant to assert [9, 36]. Others, like Brandom [5], don’t define validity in terms
of other notions, but take valid inference in some form as as primitive, and analyse
other notions in terms of it. There is plenty of disagreement on the “realist” side of
the fence too. It is one thing to argue that logical consequence involves preservation
of truth. It is another to explain how far truth must be preserved. Is the preservation

∗Many thanks to Allen Hazen, Graham Priest and Barry Taylor for fruitful discussions while I was
preparing a this paper. Thanks also to audiences at La Trobe University, the University of Melbourne,
the 2003 Australasian Association for Logic Conference in Adelaide, and the 12th International Congress
for Logic, Methodology and Philosophy of Science in Oviedo—including Diderik Batens, Thierry
Coquand, Jen Davoren, Philip Ebert, Joke Meheus, David Miller, Peter Milne, Peter Schroeder–Heister,
John Slaney and Tim Oakley—for comments on presentations of this material, and to JC Beall, Richard
Home, Ben Boyd, Jeremy St. John, Luke Howson and Charlie Donahue for comments on drafts of the
paper. ¶ This research is supported by the Australian Research Council, through grant dp0343388.
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a proof from X to Y shows us 
why it would be a mistake to 

assert each X and deny each Y



proofs articulate norms 
governing assertion and denial



a discourse has a score 
keeping track of what is 

asserted and denied



the defining rules show how we 
can score new moves in the 

assertion/denial practice, 
in terms of the old moves



Well, yes

And so do circuits.

¬I

¬I

∧I

∨I

∨I

WI¬E
A

B

A ∧ B¬(A ∧ B)

¬A

¬B

¬A ∨ ¬B

¬A ∨ ¬B

¬A ∨ ¬B

A � A

� A,¬A

� A,¬A ∨ ¬B

A � A

� B,¬B

� B,¬A ∨ ¬B

� A ∧ B,¬A ∨ ¬B,¬A ∨ ¬B

¬(A ∧ B) � ¬A ∨ ¬B,¬A ∨ ¬B

¬(A ∧ B) � ¬A ∨ ¬B

Propositional Logic 17 of 1



192 G. Gentzen. 

Fiir ~t, !B, ~), (~ setzt man beliebige Formeln ein, fiir Vt~.~ bzw. 

3 z ~ i  eine beliebige Formel mit V bzw. 3 als ~iul3erstem Zeichen, t be- 

zeichne die zugehSrige gebundene Gegenstandsvariable, fiir ~ a diejenige 

Formel, welche aus ~z entsteht, indem man die gebundene Gegenstands- 

variable z iiberall, wo sie vorkommt, dutch die freie Gegenstands- 

variable a ersetzt. 

Fiir F, A, O, A ,sind beliebige (eventuell leere) Reihen von Formeln, 

durch Kommata getrennt, einzusetzen. 

Ferner gilt fiir LJ -Sch lu l~f iguren  folgende Einschriinkung (und 

dies ist der einzige Punkt, in welchem sich die Begriffe LJ-  und LK-  

Herleitung unterseheiden) : 

,,Im Sukzedens jeder H-Sequenz darf nicht mehr als eine S-Formel 

vorkommen." -- 

Die Bezeichnungen der einzelnen Schemata ftir Logische-Zeichen-Schlul~- 

figuren, UES,  U E A  usw. sollen bedeuten: Eine nach dem Schema ge- 

bildete Schtul~figur ist eine Und - (U), Oder- (O), All- (A), Es- gibt- (E), 

Nicht-(N) bzw. Folgt-(F)-Zeichen-Einfiihrung (E) im Sukzedens (S) bzw. 

Antezedens (A). 

D ie  S c h l u f l f i g u r  en- S c h e m a t a .  

1. 2 1. Schemata fiir Struktur-Sch]u~figuren: 

Verdiinnung: 
F ~ O  

im Sukzedens: 
~, P-~ O' 

im Antezedens: 

Zusammenziehung: 

im Antezedens: 

Vertauschung: 

ira Antezedens: 

F ~ O ,  ~ 

if), ~),/~ --~ 0 im Sukzedens: F -~ O, if), 

UB8:  

UEA: 

A g S ;  

~ , F - ~  O' F ~ O , ~  ' 

F ~ O , ~ , ~ , A .  A, Cg,~,F ~ O  
im Sukzedens: 

A, ~, 7~,I '~  O' F-~ O, 79, ~ ,A  ' 

P ~ O, 7~ ff), A --> A 
Schnitt: 

P , A ~ O , A  

1.22. ~chemata fiir Logische-Zeichen-Sch]ul~figuren: 

I ' - , -0 ,9 I  F ~ O , ! 8 .  ] OEA:  ~l,F ~ O  ~3, F - > O  

2, I" -~ 0 ~, I" ~ 0 [ O JE s : T' -> 0, 2 F -~ O, !8 
~t & ~, F -+ .O 2 & !D, F ~ O 1 " - > 0 , 2  V ~3 F ~ O, ~t V !B 

F ~ O, i~a i i~a, T ~ o 

Structural rules give us constraints on scores
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connective and quantifier rules make some 
implicit aspect of the scoresheet explicit in assertion/denial



this account connects semantics 
with normative pragmatics



the logic/non-logic boundary is 
determined by two choices



the structural context, 
given by the space of scores



and the choice of 
vocabulary, 

given that context



simple modality



a proof from X to Y shows us how 
a position in which each X  is 

asserted and each Y  is denied is 
out of bounds



assertion and denial 
needn’t be flat



I can assert or deny 
under a supposition



an assertion of “I’m in Sydney” 
clashes with its denial.



an assertion of “I’m in Sydney” 
doesn’t clash with denying 

“I’m in Sydney” under the scope 
of “suppose I couldn’t get here.”



modal discourse 
is filled with shifts like these



why not take this into account
in scoring discourse?



X ⊢ Y tells us that it’d be a 
mistake to assert X and deny Y



X ⊢ Y | U ⊢ V tells us that it’d be a 
mistake to assert X and deny Y 

(in one part of the discourse) and to 
assert U and deny V (in another).



hypersequents suit proof 
systems for modal logics



X,A,B Y
[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

X,A, B Y
========== [∧Df]
X,A ∧ B Y

X A,B, Y
========== [∨Df]
X A ∨ B, Y

X A, Y
======== [¬Df]
X,¬A Y

X,A B, Y
========== [ Df]
X A B, Y

X A(n), Y
=========== [ Df]
X xA(x), Y

(where n is free in X, Y)

X,A(n) Y
=========== [ Df]
X, xA(x) Y

(where n is free in X, Y)

H[X A, Y ]
============== [ Df]
H[ A | X Y ]

1
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H[X,A,A Y]
[WL]

H[X,A Y]

H[X A,A, Y]
[WR]

H[X A, Y]

Now the classical connective rules. We will use just negation and conjunction
as examples:

H[X A, Y]
[¬L]

H[X,¬A Y]

H[X,A Y]
[¬R]

H[X ¬A, Y]

H[X,A,B Y]
[∧L]

H[X,A ∧ B Y]

H[X A, Y] H[X B, Y]
[∧R]

H[X A ∧ B, Y]

Now the modal rules. First, necessity:

H[X Y | X ,A Y ]
[ L]

H[X, A Y | X Y ]

H[ A | X Y]
[ R]

H[X A, Y]

Second, actuality:

H[X Y | X ,A @ Y ]
[@L]

H[X, @A Y | X @ Y ]

H[X Y | X @ A, Y ]
[@R]

H[X @A, Y | X @ Y ]

and finally, a priori knowability:

H[X Y X ,A @ Y ]
[APK L]

H[X,APKA Y X @ Y ]

H[ @ A X Y]
[APKR]

H[X APKA, Y]

These complete the rules of the sequent system.

lemma 1 [derived rules—weakening]: If H[X Y] has a derivation with n

steps, so does H[X,X Y , Y], for arbitrary extra formulas X and Y to add
to the sequent, and so does H[X Y | X Y ], with an extra subjunctive
alternative sequent and H[X Y X Y ], with an extra indicative alterna-
tive sequent. In other words, if a hypersequent is derivable, so is any weaker
hypersequent, with extra formlulas added in the left or right of a component
sequent, or whole extra component sequents added—and this weaker sequent
is derivable in a derivation of exactly the same length.

Proof: An induction on the construction of the derivation of H[X Y]. Notice
that if H[X Y] is an identity sequent, so is any of its weakenings—the only
constraint is that some component sequent has a formula in both sides of the
turnstile.

For the induction step, notice that in each rule use to derive H[X Y] it
may be used to derive the appropriate weakening of H[X Y] too, in terms of

Greg Restall, restall@unimelb.edu.au november 22, 2010 Version 0.99
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are nearby to the A, and so, in the hypersequent, it is a part of the same zone.
Similarly, for [�R], if we have a circuit in which A is an output wire, adjacent to
no other wires on the periphery of the circut (so, we have a sequent in which
� A in a zone of its own), then we may add a [�I] node at this point, and the
new output A is nearby no other point in the circut—that is, � �A is in a zone
of its own. The appropriate rules for identity and cut are straightforward

A � A
X � A, Y | ∆ X �, A � Y � | ∆ �

[Cut]
X,X � � Y, Y � | ∆ | ∆ �

With the system as it stands, we may make a number of derivations.

A � A
[¬L]

¬A,A �
[�L]

A � | �¬A �
[¬R]

A � | � ¬�¬A
[�R]

A � | � �¬�¬A

A � A
[�L]

�A � | � A
[∧L]

�A ∧ �B � | � A

B � B
[�L]

�B � | � B
[∧L]

�A ∧ �B � | � B
[∧R]

�A ∧ �B � | �A ∧ �B � | � A ∧ B
[�R]

�A ∧ �B � | �A ∧ �B � | � �(A ∧ B)

Clearly, to be able to derive all of the valid sequents, we must add a few struc-
tural rules. To mimic the behaviour of circuits closely, we allow contraction
inside zones in a circut, and weakening into a new zone.

X,A,A � Y | ∆
[WL]

X,A � Y | ∆

X � A,A, Y | ∆
[WR]

X � A, Y | ∆

∆
[KL]

A � | ∆

∆
[KR]

� A | ∆

Finally, to ensure that we can derive all of the valid hypersequents, we need to
be able to throw away information by merging zones in sequents.

X � Y | X � � Y � | ∆
[merge]

X,X � � Y, Y � | ∆

This rule in a sequent proof has no parallel node in the structure of a circuit.8
It corresponds to taking a circuit and merging two zones, or taking two equi-
valence classes to coalesce. One simple example is taking the circuit consisting
of a [�E] node alone, with input �A and output A to prove for us �A � A

(that there’s no model with a world w in which �A is true and A is false). This
is throwing away information, as the circuit can also be read as telling us that
�A � | � A (that there’s no model with a world w at which �A is true and w �

where A is false). This is a more general fact. There is no harm in throwing
away information, and it is helpful to have a rule such as this for when it comes

8Actually, the effect of a merge can be found by contracting two instances of A in different
zones in the proof. Then X,A � Y | X �, A � Y � merge to be come X,X �, A � Y, Y �. It seemed too
confusing to introduce contraction in this more general form. It can be modelled straightfor-
wardly as an application of merge and then [WL].
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This completes our definition of the proofs for �5.

Inductively generated circuits represent valid reasoning in �5. Here is an ex-
ample, showing how one can derive �¬�¬A from A. The circuit below has A

as its only input, an �¬�¬A as its only output.

¬E �E ¬I �I
A ¬A �¬A ¬�¬A �¬�¬A

It is a useful exercise to show that this circuit may be inductively generated
from left-to-right. The sub-circuit

¬E �E ¬I
A ¬A �¬A ¬�¬A

is inductively generated, because each of the nodes are themselves circuts. In
this circuit, the equivalence relation ν relates theA and ¬A wires, and it relates
the �¬A and ¬�¬A wires. But the nearness relation does not relate the wires
on the left to the wires on the right. As a result, we may apply [�I], since the
output wire ¬�¬A is not near to any other wire on the periphery of the circuit.
The result is the complete circuit with input A and output �¬�¬A.
This proof tells us more than simply that in any model in any world where

A is true, �¬�¬A is true (though it does tell us this too). Since the output
wire �¬�¬A is not close to the input wire A, it tells us that there is no model
at all where there is a world where A is true and a world where �¬�¬A is
not true. Those worlds need not be the same. To speak in terms of contexts,
it is incoherent to assert A in one context and to deny �¬�¬A in another
context. This is an example of the following general result, on the soundness
of inductively generated circuits.

�ʜ��ʀ�� [���ɴ�ɴ���] Given an inductively generated circuit with input wires
X1, . . . , Xn and output wires Y1, . . . , Yn, where each Xi ∪ Yi is an equivalence class
for the nearness relation, then for any �5 model, there is no set w1, . . . , wn of worlds
where each Xi is true atwi and each Yi is false atwi.

Proof: The proof is a trivial induction on theconstruction of the proof. Identity,
boolean nodes, contraction, weakening are all immediate. The cut rule is a
simple consequence of the transitivity of consequence in s5-models. For [�E]

we note that there is no model in which there is no pair of worlds, where �A is
true in one andA is false in the other. For [�I], we note that if there there is no
model satisfying some condition (concerning the rest of the wires in the proof
π except for the one output A which is near no other wire in the periphery)
where there is a world in whichA is false, then in these models there is noworld
in which A is false, and hence, there no world in which �A is false either. But
this is the condition for [�I].

Greg Restall, restall@unimelb.edu.au ��ʀ�ɪ�ɴ 1 April 12, 2006



X,A,B Y
[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

X,A, B Y
========== [∧Df]
X,A ∧ B Y

X A,B, Y
========== [∨Df]
X A ∨ B, Y

X A, Y
======== [¬Df]
X,¬A Y

X,A B, Y
========== [ Df]
X A B, Y

X A(n), Y
=========== [ Df]
X xA(x), Y

(where n is free in X, Y)

X,A(n) Y
=========== [ Df]
X, xA(x) Y

(where n is free in X, Y)

H[X A, Y ]
============== [ Df]
H[ A | X Y ]

H[X Y | X ,A @ Y ]
===================== [@Df]
H[X, @A Y | X @ Y ]
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2D modality



there are two different 
kinds of shift



indicative 
(suppose I’m wrong) 

and subjunctive 
(suppose things go differently)



suppose Oswald didn’t shoot JFK  

suppose Oswald hadn’t shot JFK  
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Freedom, oh freedom, well that’s just some people talkin’.
 —  The Eagles

W 
.*/ 01 * 2&31"(, as opposed to a non-person? One might 

begin to address the question by appealing to a second dis-

tinction: between agents, characterized by the ability to act 

freely and intentionally, and mere patients, caught up in events but 

in no sense authors of the happenings involving them. An alternative 

way to address the question appeals to a third distinction: between 

subjects — bearers of rights and responsibilities, commitments and en-

titlements, makers of claims, thinkers of thoughts, issuers of orders, 

and posers of questions — and mere objects, graspable or evaluable by 

subjects but not themselves graspers or evaluators.

We take it as a methodological point of departure that these three 

distinctions are largely coextensive, indeed coextensive in conceptu-

ally central cases. Granted, these distinctions can come apart. One 

might think that ‘person’ applies to anything that is worthy of a dis-

tinctive sort of moral respect and think this applicable to some fetuses 

or the deeply infirm elderly. Even if the particular respect due such 

beings is importantly di4erent from “what we owe each other”, such 

respect could still be thought to be of the kind distinctively due people, 

and think this even while holding that such people lack agentive or 

subjective capacity. Similarly, one might think dogs or various severe-

ly impaired humans to be attenuated subjects but not agents. 

Without taking any particular stand on such examples, our meth-

odological hypothesis is that such cases, if they exist, are understood 

as persons (agents, subjects) essentially by reference to paradigm cas-

es and, indeed, to a single paradigm within which person/non-person, 

subject/object, and agent/patient are conceptually connected.5 Stated 

6. For one detailed development of this sort of paradigm-ri4 structure, and a de-
fense of the possibility of concepts essentially governed by such a structure, 
see Lance and Little (,--)). Discussions with Hilda Lindeman have helped 
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indicative and subjunctive 
shifts are independently 

motivated for creatures who act 
on the basis of their views



this structure grounds 
a system for a 2D modal logic

for necessity (subjunctive)

a priori knowability (indicative)

& actuality (interacts with both)
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[∧L]

X,A ∧ B Y

X A, Y X B, Y
[∧R]

X,X A ∧ B, Y, Y

X,A, B Y
========== [∧Df]
X,A ∧ B Y

X A,B, Y
========== [∨Df]
X A ∨ B, Y

X A, Y
======== [¬Df]
X,¬A Y

X,A B, Y
========== [ Df]
X A B, Y

X A(n), Y
=========== [ Df]
X xA(x), Y

(where n is free in X, Y)

X,A(n) Y
=========== [ Df]
X, xA(x) Y

(where n is free in X, Y)

H[X A, Y ]
============== [ Df]
H[ A | X Y ]

H[X Y | X ,A @ Y ]
===================== [@Df]
H[X, @A Y | X @ Y ]

a = b | Fa Fb
[ Df]

a = b | Fa Fb
[ Df]

a = b (Fa Fb)

a = b Fa Fb
[ Df]

a = b Fa Fb
[APKDf]

a = b APK (Fa Fb)
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| p @ p
[@Df]

| p @ @p
[ Df]

| @ p @p
[ Df]

(p @p)

p @ p
[@Df]

p @ @p
[ Df]

@ p @p
[APKDf]

APK (p @p)
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Abstract: The two-dimensional modal logic of Davies and Humberstone [3] is an im-

portant aid to our understanding the relationship between actuality, necessity and a
priori knowability. I show how a cut-free hypersequent calculus for 2d modal logic

not only captures the logic precisely, but may be used to address issues in the episte-

mology and metaphysics of our modal concepts. I will explain how use of our concepts

motivates the inference rules of the sequent calculus, and then show that the complete-

ness of the calculus for Davies–Humberstone models explains why those concepts have

the structure described by those models. The result is yet another application of the

completeness theorem.

motivation

The ‘two-dimensional modal logic’ of Davies and Humberstone [3] is an impor-

tant aid to our understanding the relationship between actuality, necessity and
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the upshot



these rules are conservative 
and uniquely defining



if we agree on what indicative 
and subjunctive shifts occur in a 
discourse then we coordinate 

on these modal concepts



(we can coordinate on the meaning of □ 
without agreeing on whether or not a 

particular necessity claim is true)



(after all, we can coordinate on the meaning 
of ∧ without agreeing on whether or not a 

particular conjunction is true)



these modal concepts 
arise freely from the 

stratified structure 
of our discourse 



and the rules show how 
these modal concepts 

are grounded 
in our capacities



the rules tell us how to reason 
with these modal concepts



and so, can play a role 
in modal epistemology



the general structure of 
completeness theorems 
(idealise invalid sequents)
gives us something to say 

about possible worlds too



and so, this can play a role 
in modal ontology



thank you!


